Complexity of majority monopoly and signed domination problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of majority monopoly and signed domination problems

Article history: Received 29 January 2010 Received in revised form 2 December 2011 Accepted 7 December 2011 Available online 13 December 2011

متن کامل

Signed edge majority domination numbers in graphs

The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e and its closed neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If ∑x∈NG[e] f(x) ≥ 1 for at least a half of the edges e ∈ E(G), then f is called a signed edge majority dominating function of G. The minimum of the val...

متن کامل

Domination and Signed Domination Number of Cayley Graphs

In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.

متن کامل

On Nonnegative Signed Domination in Graphs and its Algorithmic Complexity

Let G = (V, E) be a simple graph with vertex set V and edge set E. A function f from V to a set {-1, 1} is said to be a nonnegative signed dominating function (NNSDF) if the sum of its function values over any closed neighborhood is at least zero. The weight of f is the sum of function values of vertices in V. The nonnegative signed domination number for a graph G equals the minimum weight of a...

متن کامل

The algorithmic complexity of signed domination in graphs

A two-valued function f defined on the vertices of a graph G (V, E), I : V -+ {-I, I}, is a signed dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every v E V, f(N[v]) 2: 1, where N(v] consists of v and every vertex adjacent to v. The of a signed dominating function is ICV) = L f( v), over all vertices v E V. The signed domination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Discrete Algorithms

سال: 2012

ISSN: 1570-8667

DOI: 10.1016/j.jda.2011.12.019